

IRB Submission Guideline for Human Sample Testing for genomics and proteomics (DNA, mRNA and Protein Analysis)

1. Purpose and Research Objectives

- Clearly articulate the purpose of using human samples for DNA, mRNA and protein analysis.
- Describe how these analyses will support the study's objectives (e.g., identifying biomarkers (diagnostics/therapeutic targets), understanding disease mechanisms or new drugs development.
- Specify if your aim is to correlate molecular findings with clinical outcomes or other data points and their importance in human health.

2. Source and Type of Biological Material

- **Source**: Detail the sample type (e.g., whole blood, tissue biopsies, cerebrospinal fluid and other body fluids) and the patient population (e.g., individuals with Disease X).
- **Collection Details**: Specify who will collect the samples (e.g., trained personnel, phlebotomists, physicians and surgeons), describe the collection setting (e.g., hospital, clinic) and method(s).
- Sample Handling and Storage: Indicate how samples will be stabilized and stored to maintain integrity of the cellular and biological components. For example:
 - RNA stability reagents (e.g., PaxGene tubes) should be used to prevent DNA and RNA degradation.
- Frequency and Volume of Collection: Define the number of collections, timing, and sample volume to minimize patient burden; avoid excessive sampling.

3. Procedures for DNA and RNA Analysis

- DNA and Total RNA Extraction methods: Describe the process, including:
 - The extraction methods (e.g., column-based, TRIzol) and any measures taken to ensure DNA and RNA quality by 1% agarose gel electrophoresis or Agilent Bioanalyzer, and Nanodrop quantification.
- **DNA and RNA Quality Control**: Indicate how RNA quality will be assessed using Agilent Bioanalyzer (e.g., using an RNA integrity number, RIN)
- DNA Genome analysis: Whole genome sequencing by Illumina sequencing platform with CD Genomics.
- RNA Quantification and Analysis:
 - mRNA Sequencing (RNA-Seq): Specify if whole transcriptome or targeted sequencing will be used, along with the sequencing depth.
 - o Quantitative PCR (qPCR): Mention any specific target genes and controls for validation.
 - o **Data Analysis**: Outline the analysis pipeline, such as alignment, quantification, and differential expression analysis. Specify software and statistical methods (e.g., DESeq2, edgeR).
- Expected Outcomes: Describe the intended outcome of genome analysis for single nucleotide polymorphism (SNPs) and mRNA expression analysis, such as identifying differentially expressed genes or validating biomarkers for clinical features.

4. Procedures for Protein Analysis

- Protein Source and extraction (if needed):
 - Source tissue: Sera, and if tissue, what buffer systems are used, and what protease inhibitors are used?
- Protein Quantification and Analysis Techniques:
 - Western Blotting: Specify the proteins or markers targeted
 - Enzyme-Linked Immunosorbent Assay (ELISA): Describe the assays for specific proteins, such as cytokines or neuroinflammatory markers, and the expected detection range.

- Mass Spectrometry (if applicable): If using proteomics, detail sample preparation, any fractionation, and the data analysis pipeline.
- Validation and Replication: Discuss plans for validating findings through multiple assays or replicates, especially for novel biomarkers or exploratory markers.

5. Expected Benefits to Participants or Society

Clarify the scientific and clinical value of the research, such as advancing understanding of disease mechanisms
or identifying biomarkers that could inform future therapies.

6. Future Use and Storage of Samples

- If samples are to be retained for future research (so requested in the study consent form), provide details on long-term storage and future use plans.
- Specify any restrictions on future uses as agreed upon in the informed consent form.
- Specify how the samples will be retained securely.

7. Specimen Identification

- The manner or type of specimen identification should be stipulated in the proposal/IRB Application.
- If specimens are to be shared outside of a Carilion Clinic facility and/or with non-Carilion Clinic Co-Principle Investigator/non-employee, all such specimens must be de-identified prior to sharing, with no PHI information associated with the specimen which might allow the source study enrollee to be identified.
- If the consent form does not stipulate/request permission to retain a specimen for future research, there must be a statement as to any left-over specimen being discarded after analysis is completed.